Докажите, сто в прямоугольном треугольнике гипотенуза больше катета: по неравенству треугольника AB<AC+CB, против большего угла в треугольнике лежит большая сторона( по теореме)
Биссектриса угла<span> треугольника делит </span>противоположную сторону<span> в отношении, равном отношению двух прилежащих сторон.
Угол 30 градусов</span>
нет не лежат точки на одной прямой
<span><span>если нижнее основание а, верхнее b, и искомый отрезок - длины х, то прощади трапеций будут такие
S1 = (b + x)*h1/2; S2 = (a + x)*h2/2;
или, поскольку S1 = S2,
(b + x)/(a + x) = h2/h1;
Чтобы получить соотношение между h1 и h2, проведем прямую,
параллельную боковой стороне через конец отрезка х, лежащий на ДРУГОЙ
боковой стороне.
Малое основание продолжим до пересечения с этой прямой. Получилось 2
подобных треугольника с основаниями (x - b) и (a - x); из подобия
следует
h2/h1 = (a - x)/(x - b);
поскольку соответствующие высоты так же пропорциональны, как и стороны.
Итак, имеем уравнение для х
(b + x)/(a + x) = (a - x)/(x - b);
x^2 - b^2 = a^2 - b^2;
x = корень((a^2 + b^2)/2);
Подставляем численные значения, получаем
х = корень(24^2 + 7^2) = 25;</span></span>