<span> х 2 [Войти (х)] ² = 10x 3
Возьмите журналы обеих сторон:
войти {X 2 [Войти (х)] ² } = Журнал (10x 3 )
Использовать правила логарифмов:
2 [Войти (х)] ² · журнал (х) = Журнал (10) + журнал (х ³)
2 [Войти (х)] ³ = 1 + 3 · журнал (х)
2 [Войти (х)] ³ - 3 · журнал (х) - 1 = 0
Пусть U = Журнал (х)
³ 2U - 3U - 1 = 0
Возможные рациональные решения для U равны ± 1, ±
Попробуйте 1:
1 | 2 0 -3 -1
| <u> 2 2 -1</u>
2 2 -1 -2
Нет, что это не решение проблемы, так как он не давал остаток 0.
Попробуйте -1:
-1 | 2 0 -3 -1
| <u> -2 2 1</u>
2 -2 -1 0
Да -1 является решением, поэтому мы учли
2U ³ - 2U - 1 = 0
как
(И + 1) (2U ² - 2U - 1) = 0
U + 1 = 0 2U ² - 2U - 1 = 0
U = -1 и =
U =
U =
U =
U =
U =
U =
Журнал уравнения U = Журнал (х) эквивалентна экспоненциальной
Уравнение х = 10 U
Поэтому у нас есть три решения:
х 10 = -1 , х = х =
В десятичной приближения они
х = 0,1, х = 23,22872667, х = 0,4305014278</span>
<span>1)2х³ - 5х² - 3х = 0.
Надо вынести х за скобки. Получим произведение х(2х</span>² - 5х - 3) = 0.
Каждый множитель может быть равен 0:
х₁ = 0
2х² - 5х - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-5)^2-4*2*(-3)=25-4*2*(-3)=25-8*(-3)=25-(-8*3)=25-(-24)=25+24=49;
Дискриминант больше 0, уравнение имеет 2 корня:
x₂=(√49-(-5))/(2*2)=(7-(-5))/(2*2)=(7+5)/(2*2)=12/(2*2)=12/4=3;
x₃=(-√<span>49-(-5))/(2*2)=(-7-(-5))/(2*2)=(-7+5)/(2*2)=-2/(2*2)=-2/4=-0.5.
</span><span>2)4х³ + х² - 3х = 2
</span><span>2)4х³ + х² - 3х - 2 = 0.
</span>Здесь видно, что одним из корней уравнения есть 1:
Разделим многочлен 4х³ + х² - 3х - 2 = 0 на х-1, получаем 4х² + 5х + 2.
Тогда исходное уравнение приобретает вид (х - 1)(4х² + 5х + 2) = 0,
Дальше приравниваем 0 второй множитель:
4х² + 5х + 2 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=5^2-4*4*2=25-4*4*2=25-16*2=25-32=-7;
<span>Дискриминант меньше 0, уравнение не имеет корней.
</span>Поэтому решением есть один вышеприведенный корень.
Ответ:
Объяснение:
1/3(3а-2b)- 1/2(4 b+5а)= 2(3a-2b)-3(4b+5a) / 6=(6a-6b-12b-15a) /6=
=(-9a-17b)/6 pri a=-2 , b=6
(-9a-17b)/6= [-9*(-2)-17*(6)]/6=(18-102)/6=-84/6=-14