Первое уравнение пока оставляем без изменений. Все числа второго уравнения делим на 3, получаем: 2х+у=3. Выделяем у= 3-2х.
Подставляет это в первое уравнение вместо у. Получаем: 3х-2(3-2х)=8. Решаем: 3х-6+4х=8. Далее 7х=8+6. То есть 7х=14. Таким образом, Х=14/2=7.
Подставляет значение Х равное 7 в уравнение у=3-2х. Получаем: 3-2*2=3-4=-1.
Таким образом, Х=2, у=-1.
Найдём 1 производную и приравняем её нулю: y'(x)=6*x²-6*x=0⇒6*x=6*x²⇒x=x²⇒x1=0, x2=1 - в этих точках 1 производная равна нулю. При x<x1 значение y'>0 (y'(-1)=12), то есть функция возрастает при увеличении х. На интервале x>x2 значение y'>0 (y'(2)=12), функция также возрастает при увеличении х. В интервале между х1 и х2 значение 1 производной меньше нуля (y'(0,5)=-1,5) и функция уменьшается при увеличении х.
Ответ: промежутки возрастания от -∞ до х1=0 и от х2=1 до +∞, промежуток убывания от х1 до х2.