Катет,лежащий напротив угла 30°,равен половине гипотенузы.
а) так как прямые пересекаются, то острый угол между ними - вертикальный, значит ∠АОС = ∠BOD. А если точка О является серединой каждой из прямых, то ΔAOC = ΔBOD (за двумя сторонами и углу между ними)
б) ∠ODB= 20⁰ , ∠AOC= 115⁰, ∠OAC - ?
∠ODB = ∠OCA (как соответствующий угол при параллельных прямых и секущей). Тогда ∠OAC= 180⁰- ( ∠AOC + ∠ODB) = 180⁰ - (115⁰ + 20⁰) = 45⁰
<h2><u>
Дано</u>
:</h2>
ABC - треугольник.
Длина стороны AB = 2 см.
Длина стороны BC = 3 см.
Длина стороны AC = 3 см.
BM - биссектриса.
<u>Найти</u> нужно: длины AM и MC.
<h2><u>
Решение</u>:</h2>
0. Построим чертёж.
1. Вспомним теорему о биссектрисе треугольника:
- Биссектриса треугольника делит его сторону на части, пропорциональные двум другим сторонам.
Для нашей задачи это значит следующее: .
2. Учитывая записанное выше соотношение, сторону AC можно мысленно разбить на 3 + 2 = 5 частей. Две части из которых составляют отрезок AM, три части - CM.
Пусть длина каждой из 5 частей равна х.
Тогда: AM = 2x, CM = 3x.
Таким образом, можем записать следующее: .
Отсюда: см.
3. Зная длину одной части, можем легко получить ответ:
(см).
(см).
<h2><u>
Ответ</u>: AM = 1,2 см и CM = 1,8 см.</h2>