Из большого угла проводим высоту к основанию, получаем прямоугольник и прямоугольный треугольник, находим углы в треугольнике.. основания в трапеции параллельны, поэтому проведенная высота дает прямой угол и к нижнему и к верхнему основания, тогда смотрим на больший угол равный 135, вычитаем из него прямой, получаем 45град, отсюда понимаем, что полученный треугольник прямоугольный равнобедренный, у нас известна гипотенуза, а квадрат гипотенузы, равен сумме квадратов катетов - находим катеты: [latex](5sqrt{2})^{2}=25*2=50 \ 50/2 =25, \ sqrt{25}=5[/latex] (находим квадрат гипотенузы, делим его на 2, и извлекаем корень квадратный, получаем катет) Катет является и высотой, значит высота равна 5см, а длина прямоугольника равна 12-5=7см Находим площадь трапеции: -площадь прямоугольника=7*5=35 -площадь треульника=(5*5)/2=12.5 площадь трапеции=35+12.5=47,5см
Область определения - множество действительных чисел: R или (-∞;∞)
область значений - множество действительных чисел: R или (-∞;∞)<span> </span>
Обозначим прямоугольник АВСД и точку пересечения диагоналей О.
Прямой угол разделён в отношении 3 : 6, в градусах это (90 /(3+6))*3 = 30° и второй угол 90-30 = 60°.
Пусть угол 30° - это угол САД, а 60° - ВАС.
По свойству диагоналей прямоугольника угол ВАС равен углу АВД.
Отсюда угол АОВ и есть угол между диагоналями и он равен 180-60-60 = 60°.
<ABC=30
Так как угол B равен углу С и это 90, поэтому нужно от 180-(90+60)=30
<A=(180-(90+30))=60
Находим третью сторону треугольника по теореме косинусов.Псть сторона=х, тогда X^2=64+9-2*8*3*cos60
X^2=49
X=7
Sбп=Pоснов.*h
S=(8+3+7)*15=270