Существуют теоремы о неравенстве треугольника для трехгранного угла: "Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов". и теорема о сумме плоских углов трехгранного угла: "Сумма плоских углов трёхгранного угла меньше 360 градусов."
Значит если плоские углы равны 90° ,65° , 45° - такой трехгранный угол существует, так как 90°<45°+65° , а 90°+65°+45°=200 < 360°.
Проведем ВО'⊥АС. Так как ΔАВС равносторонний, ВО' - высота и медиана, значит О' - середина АС.
Тогда в ΔADC DО' - медиана, а следовательно и высота. Т.е. DО'⊥АС.
Через точку О' можно провести единственную прямую, перпендикулярную АС, значит точки В, О' и D лежат на одной прямой, причем точка О' - точка пересечения BD и АС, значит точка О' совпадает с точкой О.
Итак, АО⊥BD.
В равнобедренном ΔABD АО - высота, а значит и медиана. Тогда
BO = OD.
опирающийся угол, значит двугранный угол = 60 град. т.к радиусы=8 то треуг.равностор. значит ответ: 8
Треугольник не получиться
Пусть H - точка касания.
Рассмотрим ΔAOH и ΔBOH
AO = OB
OH - общая
∠AHO = ∠BHO = 90°
Значит, ΔAOH = ΔBOH - по катету и гипотенузе.
Из равенства треугольников ⇒ ∠AOH = ∠BOH = 60°.
Рассмотрим ΔAOH
∠HAO = 90° - ∠AOH = 90° - 60° = 30° ⇒
OH = R ⇒ R = 4.
Ответ: 4.