Графически любая система решается следующим образом: Сначала каждое из уравнений системы записываешь в виде:
x-y=1 y=x-1 y=x-1 Пусть x=0⇒y=-1, (0;-1); x=1⇒y=0, (1;0)
x+2y=7 2y=7-2x y=3.5 -x Пусть x=0<span>⇒y=3,5, </span>(0;3,5)<span>; x=3,5⇒y=0, </span>(3,5;0)
Это две прямые, проходящие через эти две точки.
И так каждая система.
Прямые нарисуешь, можешь рассчитать точку пересечения этих прямых: просто приравниваешь уравнения друг к другу.
y=x-1; <span>y=3.5 -x</span>⇒x-1=3.5-x⇒2x=4.5⇒x=2.25⇒y=2.25-1=1.25⇒(2.25;1,25)
1013) Решается так(самый простой способ). Берешь точку(которая должна быть решением системы). На координатной плоскости ее обозначаешь и проводишь на ней две прямые, чтобы они пересекались в этой точке. На каждой прямой отметь по паре точек (это будут координаты точек,через которые проходят прямые), а потом уж вывести уравнение прямой по формуле: y=kx+b проще простого.
1.
sinx·(1-2cosx)=0
sinx=0 ⇒ x=πk,k∈Z
или
1-2cosx=0 ⇒ cosx=1/2 ⇒x=± arccos(1/2)+2πn, n∈Z
x=±(π/3)+2πn, n∈Z
О т в е т. πk,k∈Z; ± (π/3)+2πn, n∈Z
2.
sin^2x=1-cos^2x
4-5cosx-2·(1-cos²x)=0
2cos²x-5cosx+2=0
Квадратное относительно сosx
Замена переменной
cosx=t
cos²x=t^2
2t^2-5t+2=0
D=25-4·2·2=9
t₁=(5-3)/4=1/2 или t₂=(5+3)/4=2
Обратный переход
сosx=1/2
x=± arccos(1/2)+2πn, n∈Z
x=± (π/3)+2πn, n∈Z
cosx=2
уравнение не имеет корней, так как функция у=сosx и принимает значения от -1 до 1, никогда не принимает значение 2.
О т в е т. ± (π/3)+2πn, n∈Z
1163
2) 0,25*1,6(0,25+1,6-0,85)=0,4*1=0,4
3) 5,12(9,76+5,36-5,12)=5,12*10=51,2
1164
2) 25⁴-125²=(5²)⁴-(5³)²=5⁸-5⁶=5⁵(5³-5)=5⁵(125-5)=5³ * 120=40*3*5³