9) Ошибочка в 8, только в точке 0 функция принимает 0 значение.
1)log27(3+log2(x+2))=0
log27(3+log2(x+2))=log27 1
3+log2(x+2)=1
3 log2 2+log2(x+2)=log2 2
log2(2^3)+log2(x+2)=log2 2
log2( 8(·x+2)=log2 2 ОДЗ : х+2>0 x>-2
8(х+2)=2
8х+16=2
8х=2-16
8х=-14
х=-14:8
х=-1,75 -1,75>-2 (ОДЗ)
Ответ:-1,75
2) log3² (x)-3log3(x)=-10^lg2
1\2log3(x)-log3(x³)=-2
log3(√x)\x³=-2log3 3 ОДЗ:х>0
√x\x³=1\9
9√x=-x³
-x²√x=9
x^(5|2)=-9 корней нет ( возможно что то в условии было непонятно)
3) log(x+2) (3x²-12)=2
log(x+2) (3x²-12)=log(x+2) (x+2) ОДЗ: х+2≠1 х≠-1 и х+2>0 x>-2
3x²-12=x+2
3x²-x-14=0
D=1-4·3·(-14)=1+168=169 √D=13
x1=(1+13)\6=7\3=2 1\3
x2=(1-13)\6=-12\6=-2 ( не является корнем , ОДЗ исключает )
Ответ: х=2 1\3
5)log2 (2x-3)+ log2 (1-x)=1
log2 (2x+3)(1-x)=log2 2 ОДЗ:2х+3>0 2x>-3 x>-1.5
1-x>0 -x>-1 x<1
2x+3)(1-x)=2
2x-2x²+3-3x-2=0
2x²+x-1=0
D=1-4·2·(-1)=9 √D=3
x1=(-1+3)\4=1\2
x2=(-1-3)\4=-1
x1·x2=-1·1\2=-1\2
6) log2 x+ logx 16=5 Одз: х≠1 х>0
log 2 x+ 1\(log16 x)=5
log2 x+1\(log2^4 (x))=5
log2 x +4\(log2 x)=5
log² 2 x+4 -5log2 x=0
введём замену переменной , пусть log2 x=y
y²-5y+4=0
D=25-4·4=9 √D=3
y1=(5+3)\2=4
y2=(5-3)\2=1
возвращаемся к замене:
log2 x=4
x=2^4=16
log2 x=1
x=2
x1+x2=16+2=18
условие примера 4 не совсем точно понимаю, уточните
1) (х-4)(х-5)<=0; x-4<=0; x<=4 ; <span>
x-5<=0; x<=5;
x</span>∈[4;5]
Ответ: x∈[4;5]
2) <span>х(х-41)>0; x>0
</span>x-41>0; x>41
x∈(-∞, 0)⋃(41, +∞)
Ответ: x∈(-∞, 0)⋃(41, ∞)
3) <span>x^2-25<0; (x-5)(x+5)<0;
</span>x<5 ; x<-5
x∈(-5, 5)
Ответ: x∈(-5, 5)
4) <span> (x^2-36)/x>=0
</span>ОДЗ x>=0 ; x∈[0, +∞);
(x-6)(x+6)>=0;
x∈(-∞, -6]⋃[6, +∞)
x∈[-6, 0)⋃[6, +∞) - c учетом ОДЗ
Ответ: x∈[-6, 0)⋃[6, +∞)
5) <span>-x^2+25x<0 |*(-1);
</span>x^2-25x>0;
x(x-25)>0
x>0; x-25>0; x>25
x∈(-∞, 0)⋃(25, +∞)
Ответ: x∈(-∞, 0)⋃(25, ∞)
6) <span> (x^2-7x+10)/(x-4)>=0;
</span>ОДЗ: x-4>=0; x>=4 ; x∈[4, +∞);
(x^2-7x+10)>=0
По т. Виета:
x∈(-∞, 2]⋃[5, +∞);
x∈[2, 4)⋃[5, ∞) - c учетом ОДЗ;
Ответ: x∈[2, 4)⋃[5, ∞)
(a-6)(a+2)-(a+5)(a-7)=
(a^2+2a-6a-12)-a^2+7a-5a+35=
a^2+2a-6a-12-a^2+2a+35=
-2a+23
(если что ^ это степень))