Ответ: 8,46 см²
Объяснение: y=2x²-6 парабола с вершиной в точке(0;-6) и корнями (2;-2)
проведем прямую через точки (2;0) и (0;-6)
-2y=-6x+12
y=3x-6
теперь найдем уравнение касательной к параболе
2x²-6=3x-n (тк у параболы и касательной одна общая точка , то дискриминант будет равен 0)
2x²-3x-6+n=0
D=0⇒b²-4ac=0
9-4*(n-6)*2=0
9+48-8n=0
8n=57
n=57/8⇒ уравнение касательной
у=3x-57/8 она пересекает ось OX в точке
3x-57/8=0
3x=57/8
x=19/8
ось OY пересекает в точке
y=-57/8
тогда наименьшая площадь прямоугольного треугольника ограниченного осями OX и OY и касательной к параболе y=2x²-6
S=(x*y)/2=(19/8*57/8)/2=1083/128=8.46 см²
Y(-x)=5*(-x)² + (-x)¹⁰=5x² +x¹⁰
Так как y(x)=y(-x), то функция четная.
Будет 8. Корень из 3 сокращается и 16 делим на 2-получаем 8