Выражением
(12 × 5 ÷ 2) + (12 × 5 ÷ 2)= 60
По теореме Пифагора: с^2=а^2+b^2
c^2=9+16
c^2=25
c=5 или с=-5
-5 не удовлетворяет условию.
Овет: гипотинуза равна 5
Из треугольника СDH найдем сторону боковую, где H - точка падения высоты из вершины С.
DH=10-7=3 (одна часть трапеции - это прямоугольник, расстояние между высотами - это и есть величина меньшего основания)
СH=AB=4 (как высоты)
Отсюда по т. Пифагора CD=5
sinD=CH/CD=4/5
cosD=DH/CD=3/5
tgD=CH/DH=4/3
ctgD=DH/CH=3/4
А) x=(xA+xB)/2=(2+(-2))/2=0
y=(yA+yB)/2=(6+2)/2=4 (0;4)
б) √(xB-xA)²+(yB-yA)²=√(-2-2)²+(2-6)²=√16+16=√32=√16*2=4√2
в) Точка А(2;6) принадлежит функции 2х-у+2=0 т.к. 2*2-6+2=0