Думаю так ну просто как по другому решать даже не знаю
log16 (1+cosπ/8)(1-cosπ/8)+2log16 cosπ/8= log16 (1-cos²π/8)+lod16 cos²π/8=
log16 (sin²π/8)+log16 cos²π/8= log(4²) (sin²π/8*cos²π/8=1/2log4 sin²π/8cos²π/8=
=log4 (sin²π/8cos²π/8)^1/2= log4(sinπ/8cosπ/8)=log4 (2sinπ/8cosπ/8)/2)=
=log4 (1/2sin π/4)=log4 1/2= 1/2*-1log2 2=-1/2
3-((x+5)/(x²+5x))=3-(1/x)
x²+5x≠0
x(x+5)≠0
x≠-5, x≠0
8sin²x+sinxcosx+cos²x-4sin²x-4cos²x=0
4sin²x+sinxcosx-3cos²x=0/cos²x
4tg²x+tgx-3=0
tgx=a
4a²+a-3=0
D=1+48=49
a1=(-1-7)/8=-1⇒tgx=-1⇒x=-π/4+πn
a2=(-1+7)/8=3/4⇒tgx=0,75⇒x=arctg0,75+πk,k∈z