Для начала найдем координаты векторов (сторон) и их модули (длины).
Вектор |АВ|=√[(Xb-Xa)²+(Yb-Ya)²]= √(0+3²)=3. AB{0;3}.
Вектор |АD|=√[(Xd-Xa)²+(Yd-Ya)²]= √(4²+2²)=2√5. AD{4;2}.
Вектор |BC|=√[(Xc-Xb)²+(Yc-Yb)²]= √(2²+1²)=√5. BC{2;1}.
Вектор |CD|=√[(Xd-Xc)²+(Yd-Yc)²]= √(2²+(-2)²)=2√2. CD{2;1}.
Мы видим, что в четырехугольнике нет равных сторон.
Проверим их на параллельность (коллинеарность).
Два вектора коллинеарны, если отношения их координат равны.
Таким образом, вектора ВС и AD - параллельны, то есть четырехугольник - трапеция.
Проверим, не прямоугольная ли у нас трапеция.
Для этого достаточно проверить углы между боковыми сторонами и основанием - векторами АВ и AD, и DA и DC.
Углы между векторами (сторонами) находятся по формуле:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
<A - угол между векторами АВ и АD
CosA ( = (0+6)/(6√5)=√5/5 ≈ 0,447. <A=arccos(0,447) ≈64°.
<D - угол между векторами DA и DC:
CosD= (8+(-4))/(4√10)= √10/10 ≈ 0,316. <C=arccos(0,316) ≈72°.
Прямых углов нет.
Итак, четырехугольник выпуклый и является трапецией.
P.S. Для проверки решения сделаем чертежна координатной плоскости. (см. приложение).
Стержень - это цилиндр высотой Н и радиусом R.
Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d:
D=d=a√2=12√2.
Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH.
Объем прям.параллелепипеда Vп=a²H=144H.
Объем проделанного отверстия радиусом r=6/2=3:
Vо=πr²H=9πH.
Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16)
Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
S(кр)= R^2*П, S=16П см^2
R^2= S/П
R^2= 16
R=4
Сторона квадрата вдвое больше его радиуса вписанной окружности.
a=4*2=8
S=a^2 S= 8^2= 64 см^2
46:2 =23 - сумма двух сторон
(23 -5)÷3 -6 -АВ
11 - ВС
23 -11-6 = 6 см -СF
BF -17 см (11+6)
АВ -6
Периметр квадрата равен 4а, где а-длина стороны квадрата
4*11,8=47,2 м