по формулам синуса и косинуса суммы и разности двух аргументов имеем:
cos(5П/8)*cos(3П/8)+sin(5П/8)*sin(3П/8)=сos(5П/8-3П/8)=cos(П/4)=<u>корень2/2</u>
sin(2П/15)*cos(П/5)+cos(2П/15)*sin(П/5)=sin(2П/15+П/5)=sin(2П/15+3П/15)=sin(5П/15)=sin(П/3)=<u>корень3/2</u>
cos(П/12)*cos(П/4)-sin(П/12)*sin(П/4)=сos(П/12+П/4)=сos(П/12+3П/12)=сos(4П/12)=сos(П/3)=<u>1/2</u>
sin(П/12)*cos(П/4)-cos(П/12)*sin(П/4)=sin(П/12-П/4)=sin(П/12-3П/12)=sin(-2П/12)=sin(-П/6)=-sin(П/6)=<u>-1/2</u>
одна целая двадцать одна сотая в двенадцатой степени = 9.8497
7(2-3k)+21k=14-21k+21k=14
14=14
Lg(x +1)/x > 0 (x +1)/x > 0
------------------ -1-------------------0------------ x∉(-1;0)
+ - +
(x +1)/x > 1 1+1/x-1 > 0 → 1/x> 0 x> 0