<span>1) Координаты вектора определяюnся разностью одноименных координат его точек.
Вектор АВ (-2i:3j; 0k), АВ = 3,6056
Вектор АС (-2i;0j;6k), АС = 6,3246
Вектор АД (0i;3j;8k). АД = 8,544
Модуль вектора d = √ ((х2 - х1 )^2 + (у2 - у1 )^2 + (z2 – z1 )^2).
2) Угол между векторами (АВ ) ⃗ и (АС) ⃗;
АВ-АС 4 4 13 3,606 40 6,325 22,8 cos α = 0,175412
акос α = 1,394472 радиан = 79,89739 градус.
3) Проекция вектора (АD) ⃗ на вектор (АВ) ⃗
Решение:
Пр ba = a · b|b|
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bza · b = 0 · (-2) + 3 · 3 + 8 · 0 = 0 + 9 + 0 = 9
Найдем модуль векторов:
|b| = √bx² + by² + bz² = √(-2)² + 3² + 0² =
= √4 + 9 + 0 = √13
Пр ba =9/√13 = 9√13/13 ≈ 2.4961508830135313.
</span>
1.
а) Продолжаем прямую А1М до пересечения с продолжением ркбра В1В в точку Р.
Точка Р принадлежит и прямой А1Р(А1М) и плоскости ВВ1С1, поскольку прямая В1Р принадлежит этой плоскости. Значит точка Р т является искомой точкой.
б)Точки Р и С1 принадлежат и плоскости А1МС1 и плоскости ВВ1С1. Значит линия пересечения этих плоскостей - прямая С1Р.
в) Прямая С1Р пересекает ребро ВС в точке К.
Эта точка принадлежит и плоскости АВС и плоскости А1МС1. Точка М также принадлежит и плоскости АВС и плоскости А1МС1. Через эти две точки можно провести только одну прямую КМ и эта прямая - искомая линия.
г) Соединив все имеющиеся точки получим искомую плоскость сечения МА1С1К.
2.
Продолжим прямую DM до пересечения с ребром ВС грани АВС. Получим точку Т, которая принадлежит плоскости ADT и плоскости АВС. Точки N и М принадлежат плоскости ADT, так как лежат на прямых AD и DT.
Проведя прямые NM и АТ до их пересечения, получим точку Р, принадлежащую плоскостям АDТ и АВС и, естественно, прямой MN и плоскости АВС. Соединив точки К и Р, получим точку Е на ребре ВС, принадлежащую плоскости АВС и плоскости КМР. Проведя прямую ЕМ до пересечения с ребром DC, получим точку Q. Соединив точки K, N, Q и E, получим искомое сечение.
Угол 2 равен 50 градусов
1-внутренние накрест лежащие
2- смежные (180-130)
АМ1/В1М1=2/5=2х/5х, АВ1=АМ1+В1М1=2х+5х=7х, АМ1/АВ1=АМ/АВ, 2х/7х=АМ/14, АМ=2*14/7=4