Площадь параллелограмма равна произведению сторон на синус угла между ними т.е. аб*ад*sin<span> ∠а
S= 9*6*1/2= 27 (см</span>²)
2 картинка - 6
А 1 вроде как - 4 )
Как помню, как поняла ...
Множество точек, расположенных на расстоянии 1.5 от точки О задается окружностью с центром O и радиусом 1.5. Уравнение окружности - (x-a)^2+(y-b)^2=r^2, у нас r=1.5, a=0, b=0 (центр в начале координат), тогда нужное уравнение имеет вид x^2+y^2=2.25
Решим эту задачу без применения частной формулы для правильного треугольника:Проведем в правильном треугольника АВС к каждой из сторон высоты: AF, BH, CE. Точка пересечения О.
Они будут и высотами и медианами и биссектрисами.
Рассмотри треугольник AFC: он прямоугольный. Угол FAC равен 30 (AF - биссектриса)⇒FC=½АС = ½5√3.
Находим катет AF: √((5√3)²-(½5√3)²) = √(75-75/4) = √(225/4) = 15/2
Исходя из равенства всех треугольников, полученных в результате построения высот треугольниа АВС, точкой пересечения высоты делятся в соотношении 2:1, т. е. АО=⅔AF⇒AO=⅔*(15/2)=5 см. Это и есть радиус.
Площадь S=πr²⇒S=25π
Длина окружности L=2πr⇒L=10π
Частная формула гласит R=(√3/3)*a⇒R=(√3/3)*5√3=15/3=5 (т. е. верно)