<span>1/(х-1)(х-3)+1/(х-3)(х-5)+1/(х-5)(х-7)=</span>
<span>приведем к общему знаменателю - (х-1)(х-3)(х-5)(х-7)</span>
<span>= [(x-5)*(x-7) + (x-1)*(x-7) + (x-1)*(x-3)]/(х-1)(х-3)(х-5)(х-7) =</span>
= (x²-5x-7x+35 + x²-x-7x+7 + x²-x-3x+3)/(х-1)(х-3)(х-5)(х-7) =
= (3x²- 24x + 45)/(х-1)(х-3)(х-5)(х-7)=
= 3(x²- 8x + 15)/(х-1)(х-3)(х-5)(х-7)=
по теореме Виета
x²- 8x + 15 = 0
х1=3
х2=5
= 3(х-3)(х-5)/(х-1)(х-3)(х-5)(х-7)=
= 3/(х-1)(х-7)