6)х - соответственный углу 100° при параллельных а, б и секущей => х=100°
7)а-4
б-3
в-2
140. Пусть первый угол х, тогда второй х + 80.
Правило: сумма односторонних углов при пересечении двух параллельные прямых секущей равна 180°.
х + (х + 80) = 180
2х + 80 = 180
2х = 180 - 80
2х = 100
х = 50
х + 80 = 50 + 80 = 130
Ответ: 50° и 130°.
142. Правило: соответственные углы при пересечении двух параллельных прямых секущей равны.
а) 1) 180 - 139 = 41 (°)
2) 41 ≠ 42 (°)
Ответ: нет, не параллельны.
б) 1) 180 - 120 = 60 (°)
2) 60 = 60°
Ответ: да, параллельны.
в) Правило: накрест лежащие углы при пересечении двух параллельных прямых секущей равны.
1) 180 - 74 - 38 = 68 (°)
2) 68 = 68 (°)
Ответ: да, параллельны.
145. Чертёж необходимо дополнить, сделав его таким, как в приложении.
1) ∠1 = 180° - 133°- 22° = 25° (т.к сумма углов в треугольнике всегда 180°)
2) ∠2 = ∠1 (накрест лежащие при a II b и секущей с
∠2 = 25°
3) ∠х = 180° - 45° - 25° = 110°
Ответ: 110°.
1) Площадь проекции треугольника со сторонами 39, 17, 28 см определим по формуле Герона.
р = (39+17+28)/2 = 42 см.
Sп = √(42(42-39)(42-17)(42-28)) = 210 см².
Площадь проекции равна: Sп = S*cos α.
Отсюда находим угол α наклона плоскостей.
α = arc cos(Sп/S) = arc cos(420/210) = arc cos0,5 = 60°.
2) Для решения дополнительного задания надо было указать фигуру в основании пирамиды.
Решение:
по теореме sin^2 A + cos^2 A = 1
cos^2 A = 1 - sin^2 A = 1 - (√7 /4)^2 = 1 - 7/16 = 16/16 - 7/16 = 9/16
cos A = √9/16 = 3/4
Рассмотрим треугольник AHC. Угол АНС = 90 градусов, т.к. СН - высота.
AH, CH - катеты. AC - гипотенуза.
cos A = AH / AC (отношение прилежащего катета к гипотенузе)
AH / AC = 3/4
AH = AC*3/4 = 4*3/4 = 3
Ответ: 3.