Определение: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям)".
Итак, <ABC=90°, АВ=ВС (дано).
Опустим перпендикуляры из вершины В на плоскость α и гипотенузу АС. Тогда <BHP является линейным углом двугранного угла между плоскостями АВС и α по определению. Пусть катеты треугольника АВС равны "а". ВН - высота из прямого угла равнобедренного треугольника АВС. ВН = а√2/2. В прямоугольном треугольнике ВНР острый угол равен 45°, значит треугольник равнобедренный и ВР = ВН*√2/2 = а√2/2*(√2/2) = а/2. В прямоугольном треугольнике ВРС угол ВСР - это угол между наклонной ВС и ее проекцией РС на плоскость α, то есть это угол между наклонной и плоскостью по определению.
Sin(<BCP) = ВР/ВС или Sin(<BCP) = а/2/а =1/2. =>
<BCP = arcsin(1/2) = 30°. Это ответ.
Дано: точки А,В,С и D принадлежат окружности (О;R).
Окружность ВСЕГДА лежит в ОДНОЙ плоскости по определению.
Определение: "Окружность — это линия НА ПЛОСКОСТИ, каждая точка которой расположена на одинаковом расстоянии от центра окружности.
Следовательно и точки А,В,С и D принадлежат этой плоскости.
Что и требовалось доказать.
Решение на первое задание
2 ответ верный и 4, тк он смежный с прямым
В прямоугольном тр-ке acd против угла 30° лежит катет, равный половине гипотенузы. то есть ad = 2cd.
Треугольник abc - равнобедренный с углами при основании ас равными 30 (углы bac=cab=bca так как ас биссектриса, а bc параллельна ad). Тогда по теореме косинусов в тр-ке abc ac² = ab²+ab² - 2*ab*Cos120° = 2*ab²*(1,5) = 3*ab².
В прямоугольном тр-ке acd по Пифагору ac² = 4cd² - cd² = 3cd².
Имеем: 3*ab² = 3cd², то есть ab = cd. Тогда периметр трапеции 35 = 5ab, откуда ab = 7см