Для решения задачи (найти АК) надо использовать Δ АСК. В нём известен катет. Искать надо гипотенузу. Чтобы её найти, надо знать второй катет СК
СК можно найти из Δ ЕСК (прямоугольный равнобедренный. В нём известна гипотенуза ЕС = 12√2, а два равных катета неизвестны) ЕК = СК = х.
По т. Пифагора x^2 + x^2 = (12√2)^2
2x^2 = 144·2
x^2 = 144
x = 12 ( ЕК = CK )
Теперь Δ АСК можно использовать. По т. Пифагора (АК)^2 = 35^2 + 12^2
(AK)^2 = 1225 +144= 1369
AK = 37
вот народ пошел, уже 78*5/2 сосчитать не могут :))) есть же калькуляторы:)))
Получилось так. Надеюсь, что правильно. Удачи!)
Решение задачи:
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
<span>т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать. </span>