Площадь прямоугольника равна произведению его смежных сторон.
Ответ: 60
Объяснение:
Трапеция АВСД, АВ-низ, СД-верх. S=(АВ+СД)/2*Н, а средняя линия равна (АВ+СД):2, т.е. =5, значит S=5*12=60
Опустим высоту из вершины (любой) верхнего основания на нижнее. Получим прямоугольный ∆, нижний катет которого
а=(14-6)/2=4. Гипотенуза с=5см, тогда катет b=√(5²-4²)=3 см, а он в то же время есть высота трапеции h=3 см. Площадь трапеции s=(c+d)*h/2=(6+14)*3/2=30 см2
<em>№4 Боковые ребра треугольной пирамиды взаимно перпендикулярны и равны 8, 6, и 6. <u>Найдите радиус</u> описанной около этой пирамиды сферы.</em>
Пусть данная пирамида МАВС. (см. рисунок)
Из условия следует, что боковые грани данной пирамиды - прямоугольные треугольники.
∆ МАС=∆ МВС по равным катетам. ⇒
их гипотенузы равны: АВ=АС.
По т. Пифагора АВ=10.
∆ МСВ - равнобедренный прямоугольный с катетами, равными 6. ⇒
СВ=6√2 .
Пирамида вписанная, все ее точки лежат на поверхности сферы.
Основание пирамиды лежит в плоскости, пересекающей сферу по окружности с радиусом, равным радиусу описанной вокруг АВС окружности. Для радиуса описанной окружности равнобедренного треугольника
<em>R=a² :√(4a² -b² )</em>
R=100:√328=50:√82
Основание высоты МО пирамиды лежит в центре описанной вокруг АВС окружности.
МО из ∆ АОМ по т.Пифагора:
МО =√(АМ² -АО²) =√(64- (50:√82)²)= √2748/82)
Для осевого сечения сферы диаметр АТ сечения и диаметр МК сферы - пересекающиеся хорды.
<em>Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.</em> ⇒ АО*ОТ=МО*ОК.
ОК=АО²:МО
ОК=(50:√82)²:√(2748/82)=2500:√225336=5,267
Диаметр сферы МК=МО+ОК=√2748/82)+5,267=5,789+ 5,267= ≈11,056
<span>R =D:2= </span>≈ 5,528 (ед. длины)