Пусть авсд равнобокая трапеция , докажем что углы трапеции при основании СД равны. проведем через вершину В прямую параллельную стороне АД. Она пересечёт луч ДС в некоторой точке Е. четырёхугольник АВЕД параллелограмм. по свойству параллелограмма ВЕ=АД.по условию АД=ВС (трапеция равнобокая) значит треугольник ВСЕ равнобедренный с основанием ЕС . Углы треугольника и трапеции при вершине С соответственные углы при пересечении параллельных прямых секущей. поэтому угол АДС=углу ВСД чтд
Найти надо КС
ΔACB-прямоугольный и равнобедренный
ΔKAC прямоугольный
KC^2=AC^2+AK^2
AC из ΔABC: AB^2=AC^2+BC^2=2AC^2; 4^2=2AC^2; AC^2=16/2 ; AC=2√2
KC^2=(2√2)^2+1^2=8+1=9
KC=3
Сумма дуг АВ,ВС,СД и АД равна 360
3х+2х+13х+7х=360
25х=360
х=14,4 ДугаСД=13х=187,2, дугаАВ=3х=43,2
Угол между двумя секущими МД и МС равен полуразности дуг ДС и АВ
угол АМВ=(187,2-43,2):2=72
Длина АВ=√(2-1)²+(3-6)²=√10
Длина ВС=АВ=√10 ( т.к квадрат)
Координата "y" точки С такая же как и у вершины В ( на рисунок глянь)
Найдем координату х точки С:
ВС=√(х₂-х₁)²+(y₂-y₁)²
х₂; y₂- координата вершины С
х₁; y₁- координата вершины В
√10=√(х₂-2)²+(3-3)²
10=х₂-2⇒х₂=12
Координаты точки С (12;3)
Находим длину (модуль) вектора АС:
Координаты точки С (12;3)
Координаты точки А (1;6)
АС=√(х₂-х₁)²+(y₂-y₁)²
х₂; y₂- координата вершины С
х₁; y₁- координата вершины A
АС=√(х₂-х₁)²+(y₂-y₁)²=√(12-1)²+(3-6)²=√130
Координаты вектора АС:
АС ((х₂-х₁);(y₂-y₁))
АС(11;-3)
В13. их траектории образуют прямоугольный треугольник с катетами 21 и 28. соответственно через один час расстояние между ними будет равно гипотенузе треугольника S^2=21^2+28^2=1225, значит S=35 км.
В14. ответ 3 метра. смотри фото.