Может быть так...точка М- середина хорды, значит центр окружности и т.М лежат на одной прямой. Согнуть по линии 1. Согнуть по линии 2, так, чтобы линия 2была перпендикулярна линии1. Тем самым определяем точки ВиС. Ну согнуть по линии 3, а затем по линии 4.
Угол с равен 30 потому что катет вс равен по теореме Пифагора 10× корень3. а это в два раза больше катета вд.таким образом углы равны 90° 60° 30°
<span>Трапеция ABCD -плоская фигура, т.е прямые, содержащие все стороны трапеции лежат в одной плоскости. Боковые стороны трапеции. AB и CD,не параллельны, по определению трапеции, т.е. не лежат на параллельных прямых, значит, прямые АВ иСD, содержащие боковые стороны, пересекаются. По условию АВIIa, CDIIa. На плоскости а возьмем т.К и через прямую АВ и т. К проведем плоскость(АВК), через прямую СD и т.К проведем плоскость(СDK). Эти плоскости пересекут плоскость а<em> </em>по прямым, параллельным АВ иСD соответственно и пересекающимся в т.К. А если две прямые, которые пересекаются, одной плоскости параллельны двум прямым, которые пересекаются другой плоскости, то такие плоскости параллельны, значит, плоскость трапеции параллельна плоскости а. Прямые, содержащие основания трапеции, лежат в плоскости трапеции, следовательно, они не имеют общих точек с плоскостью а ,т.е. параллельны плоскости а.</span>
Плоскость а,допустим,это пол,а трапеция- на потолке.
АВСД равнобокоя трапеция; АС - это биссектриса, она отсекает от трапеции равнобедренный треугольник АВС: АВ=ВС=х; СД=х ( трапеция равнобокая); 1,8м=18дм; 54=18+х+х+х; 3х=36; х=12 дм; ответ: 12
Обозначим катеты а и в, гипотенуза с и высота h
по условию а+в=3√5
проведем преобразования - возведем в квадрат обе части
(а+в)²=45
а²+2ав+в²=45
а²+в²+2ав=45 но т.к. у нашего треуг. с²=а²+в²,то заменим
с²+2ав=45 но S=ав/2=сh/2 ⇒ав=сh опять подставим и получим
с²+2сh=45
c²+2c*2-45=0
c²+4c-45=0 решая кв. ур-ие получаем одно положительное значение (отриц. не подходит)
с= 6