угол1 (меньший)=х, угол2=х+36, угол2/угол1=3/2, х+36/х=3/2, 3х=2х+72, х=72, 72+36=108, 72+108=180 - если при пересечении двух прямых третьей сумма односторонних углов=180, то прямые параллельны
Аксиома параллельных прямых: через точку не лежащую на данной прямой,можно провести только одну прямую,параллельную данной.
Сумма односторонних углов равна 180°.
Накрест лежащие углы равны.
Есть два варианта : Первый площадь параллелограмма S=a*b*Sinα=12*16*0,5=96 α=150
Сумма углов выпуклого четырёхугольника равна 360гр. в параллелограмме противоположные углы равны, значит угол А = углу С=(360-300)/2=30.
Рассмотрим прямоугольный треугольник АВН, в прямоугольном треугольнике катет лежащий против угла в 30 гр равен половине гипотенузы т.е ВН=6.
По формуле S=AD*h (h-высота) находим S=16*6=96
Рассмотрим ΔВДС и ΔВЕА. Они подобны по первому признаку подобия (по двум углам).
<u>В ΔВДС </u>известна гипотенуза ВС=13 и можно найти стороны ВД и ДС.
ВД=АВ/2=5 <em>(т.к. высота к основанию равнобедренного тр-ка является и его медианой)</em>
ДС=√(ВС²-ВД²) <em>(как катет в прямоугольном тр-ке) </em>
ДС=√(13²-5²)=√144=12
Теперь рассмотрим <u>ΔВЕА.</u>
В нем известна гипотенуза АВ=10.
Найдем коэффициент подобия треугольников. к=АВ/ВС=10/13.
По свойству подобия треугольников найдем больший катет АЕ=ДС·к=12·10/13=120/13=9
Ответ: АЕ=9