Отрезки диаметра: х и 21 + х
10² = х( 21 + х)
х² + 21 х -100 = 0
По т. Виета х1 = 4 и х2 = -25( не подходит по условию задачи)
Отрезки диаметра 4 и 21 + 4 = 25
Сам диаметр = 29
С= πd = π·29 (cм)
Ответ: 29π см
Якщо перший кут при основі дорівнює 58°, то й другий кут при основі матиме ту саму градусну міру (властивість рівнобердренного трикутника)
сумма кутів трикутника дорівнює 180°отже, кут при вершині = 180-°(58°+58°) = 180°-116°= 164<span>°
</span>відповідь: 164°
<span>Первый признак равенства треугольников.</span>
<span>Все помнят первый признак равенства тр-ков - по 2-м сторонам и углу между ними.</span>
<span>Надеюсь, помнят и его доказательство: </span>
<span>Имеем тр-ки АВС и А`В`С`, у которых АС = А`С`, АВ = А`В` и угол ВАС = углу В`А`С`</span>
<span>Совмещаем отрезок АС с А`С`, при этом угол ВАС совместится с В`А`С` и прямая АВ совместится с А`В`. Поэтому точка В совместится с точкой В` из-за АВ = А`В` и тр-к АВС совместится с А`В`С`, то есть эти тр-ки конгруэнтны (по рабоче-крестьянскому - равны).</span>
<span>До сих пор кажется, что всё ОК.</span>
<span>А теперь сюрприз.</span>
<span>Пусть у нас равнобедренная трапеция АВСД с равными боковыми сторонами АВ и СД.</span>
<span>Треугольники АВД и АСД, как объясняют в школе равны по 1-му признаку равенства треугольников.</span>
<span>А теперь забудем о трапеции. Как доказать, что треугольники АВД и АСД равны если известно, что АВ=СД, угол ВАД = углу СДА, а сторона АД у них общая?</span>
<span>Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.</span>
S = 1/2 * АВ * ВС * sin угла В
126 = 1/2 * 14 * 18 * sin угла В
126 = 126 * sin угла В
sin угла В = 126 / 126 = 1
S = 1/2 * МВ * ВК * sin угла В
МВ = АВ+14 = 28
ВК = ВС+9 = 27
S = 1/2 * 28 * 27 * 1 = 14 * 27 = 378 см2