Рисунок во вложении.
Назовем хорду АВ. Через точку В проведем касательную, из точки А проведем перепндикуляр АС к касательной-это и будет расстоянием от А до касательной. Получили прямоугольный треугольник АВС.
Теперь проведем диаметр окружности перпедикулярно хорде АВ. Он будет делить эту хорду пополам.<span> </span><em>Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам.</em> Точку пересечения хорды и диаметра назовем К .
Проведем радиус ОВ. Так как ОВ перпендикулярен касательной и АС перпендикулярен касательной, то ОВ//АС. Углы 1 и 2 накрест лежащие, значит они равны.
Рассмотрим треугольники АВС и ВОК: они прямоугольные и имеют по равному острому углу, значит они подобны. Из подобия следует, что ОВ:АВ=АС:ВК => ОВ:12=6:8 => ОВ=9
Ответ: 9см.
По теореме о трапециях (теореме Кансера), площадь трапеции равна произведению ей меньшего основания на большую диагональ, то есть S=3*8=24.
Рисуем треугольник АВС. Угол А - прямой.
Проводим высоту АК на сторону СВ.
ВК = 6 см
КС = 2 см
Составляем уравнения теоремы Пифагора
АК^2 = AC^2 - KC^2
или
АК^2 = AC^2 - 4 [уравнение 1]
AK^2 = AB^2 - BK^2
или
AK^2 = AB^2 - 36 [уравнение 2]
AB^2 + AC^2 = BC^2
или
AB^2 + AC^2 = 64 [уравнение 3]
Складываем уравнени [1] и [2]
2 * АК^2 = AC^2 + AB^2 - 40
Вместо суммы квадратов катетов подставляем значение квадрвта гипотенузы из уравнения 3
2 * АК^2 = 64 - 40
АК^2 = 12
Находим катет АС
АС^2 = AK^2 + KC^2 =
AC^2=12 + 4 = 16
AC = 4 см
sin В = АС/СВ = 4/8 = 1/2
В = 30 гр
<span>С = 60 град </span>
<span><em>Расстояние от точки до прямой равно длине отрезка, проведенного из данной точки перпендикулярно к этой прямой.</em> </span>
<span>КН - искомое расстояние. КН </span>⊥<span> АВ. </span>
<span>По т. о трех перпендикулярах СН - проекция наклонной КН - также перпендикулярна АВ. </span>
<span>В равнобедренном по условию прямоугольном ∆ АВС перпендикуляр СН - медиана и равна половине гипотенузы ( свойство). </span>
<span>СН=12√2:2=6√2.</span>
<span>КН=√(KC*+HC</span>²<span>)=√(16+72)=√88=2√22 см</span>