(0.5)^4-(0.5)^3=(0.5)^3(0.5-1)=0.125(-0.5)=-0.0625
Sinx-cos3xsinx=0
sinx(1-cos3x)=0
sinx=0⇒x=πn
cos3x=1⇒3x=2πn⇒x=2πn/3
Ответ:
..........................
<span>Решение
</span>√2sinx*cosx=cosx
<span>√2sinx*cosx - cosx = 0
cosx*(</span>√2sinx - 1) = 0
1) cosx = 0
x₁ = π/2 + πk, k ∈ Z
2) √2sinx - 1 = 0
sinx = 1/√2
x = (-1)^n * arcsin(1/√2) + πn, n ∈ Z
x₂ = (-1)^n * (π/4)<span> + πn, n ∈ Z
</span>Ответ: x₁ = π/2 + πk, k ∈ Z ; x₂ = (-1)^n * (π/4)<span> + πn, n ∈ Z</span>