Cos45°-sin180°=√2/2-0=√2/2
Sin ^ 2 ( 180 - x) = sin ^2 ( x)
sin ^2 (270 - x) = cos^2 (x)
sin^2(x) + cos^2(x) =1
(1-2sin²α)/(1+2sinα)=(1-tgα)/(1+tgα)
1. 1-2sin²α=sin²α+cos²α-2sin²α=cos²α-sin²α
2. 1+sin2α=sin²α+cos²α+2sinα*cosα=(sinα+cosα)²
3. 1-tgα=1-sinα/cosα=(cosα-sinα)/cosα
4. 1+tgα=1+sinα/cosα=(cosα+sinα)/cosα
(cos²α-sin²α)/(sinα+cosα)²=[(cosα-sinα)/cosα] / [(cosα+sinα)/cosα]
[(cosα+sinα)*(cosα-sinα)] /(sinα+cosα)²=(cosα-sinα)/(cosα+sinα)
(cosα-sinα)/(sinα+cosα)=(cosα-sinα)/(cosα+sinα)
=3х/(2у+3) +х(х+3)/((4ху-2у)+(-3+6х))
=3х/(2у+3) +х(х+3)/(2у(2х-1)+3(2х-1))
=3х/(2у+3) +х(х+3)/(2у+3)(2х-1)=
=(3х(2х-1)+х(х+3))/(2у+3)(2х-1)=
=(6х^2-3х+х^2+3х)/(2у+3)(2х-1)=
=7х^2 /(2у+3)(2х-1)
ответ "А"