Arccos (0) + arcsin (-1/2) - 2•arcsin (-1) + 12•arccos (-sqrt3/2) = π/2 + (-π/6) - 2•(-π/2) + 12•5π/6 = π/2 - π/6 + π + 10π = π/3 + 11π = 34π/3
1) 12х^2-3х-9х-12х^2=4,8
3х-9х=4,8
-6х=4,8/:(-6)
х=0,8
2) х^2-1,6х+3,6=х^2-0,7х
-1,6х+0,7х=-3,6
-0,9х=-3,6/:(-0,9)
х=4
3) 9х^2-4х-9х^2+3х=8-х
-4х+3х+х=8
0=8
4) 18х^2-18х^2-12х=-12х
-24х=0
Так как логарифмическая функция возрастающая, то наименьшее значение функции будет в точке вершины параболы
- вершина параболы: (ветви направлены вверх!!!!)
- Наименьшее значение