При пересечении двух прямых образуется два равных вертикальных угла и еще два равных вертикальных
один угол=1 часть, второй 4 части 1+4=5 частей это развернутый угол делится
180:5=36 град это первый и второй равные вертикальные углы
36 х 4=144 град это третий и четвертый вертикальные углы
Удачи!
86*75кг=6450кг или 6 т 450 кг
6450-3900=2550кг
2550:75=34 ответ 34 мешков смололи
<span>площадь боковой поверхности цилиндра равна 2πR*h = 100π см</span>² (h -высота цилиндра)
площадь осевого сечения равна 2R*h. Отсюда <span>площадь осевого сечения равна 100см</span>²
Площади подобных треугольников равны 17смв квадрате и 68см в крадрате.
Сторона первого треугольника равна 8см. Надо найти сходственную сторону второго треугольникаОпределение: Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. ΔABC ~ A1B1C1
1. Подобны ли треугольники? Почему? (заготовленный чертеж ).
а) Треугольник ABC и треугольник A1B1C1, если AB = 7, BC = 5, AC = 4, ∠A = 46˚, ∠C = 84˚, ∠A1 = 46˚, ∠B1 = 50˚, A1B1 = 10,5 , B1C1 = 7,5, A1C1 = 6.
б) В одном равнобедренном треугольнике угол при вершине равен 24˚, а в другом равнобедренном треугольнике угол при основании равен 78˚.
Вспомним теорему об отношении площадей треугольников, имеющих по равному углу.
Теорема: Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.
2. Письменная работа по заготовленным чертежам.
На экране чертеж:
а) Дано: BN : NC = 1:2,
BM = 7 см, AM = 3 см,
SMBN = 7 см2.
Найти: SABC
(Ответ: 30 см2.)
б) Дано: AE = 2 см,
EB = 5 см,
AK = KC,
SAEK = 8 см2.
Найти: SABC
(Ответ: 56 см2.)
3. Докажем теорему об отношении площадей подобных треугольников (доказывает теорему ученик на доске, помогает весь класс).
Теорема: Отношение двух подобных треугольников равно квадрату коэффициента подобия.
4. Актуализация знаний.
Решение задач:
1. Площади двух подобных треугольников равны 75 см2 и 300 см2. Одна из сторон второго треугольника равна 9см. Найти сходственную ей сторону первого треугольника. (Ответ: 4,5 см.)
2. Сходственные стороны подобных треугольников равны 6см и 4см, а сумма их площадей равна 78 см2. Найти площади этих треугольников. (Ответ: 54 см2 и 24 см2.)
При наличии времени самостоятельная работа обучающего характера.
Вариант 1
У подобных треугольников сходственные стороны равны 7 см и 35 см.
Площадь первого треугольника равна 27 см2.
Найти площадь второго треугольника. (Ответ: 675 см2.)
Вариант 2
Площади подобных треугольников равны 17 см2 и 68 см2. Сторона первого треугольника равна 8см. Найти сходственную сторону второго треугольника. (Ответ: 4 см.).
Сумма двух любых сторон треугольника должна быть больше, чем его третья сторона, на этом основывается все задание.
а) 3+3 меньше чем 7
Значит сторона будет равна 7.
б) 6+6 больше 4
4+4 больше 6
Значит сторона может быть равна как 6, так и 4.