Треугольник образованый кротким концом нулевым уровнем и высотой подобен треугольнику с длинным плечом нулевым уровнем и высотой падения=> высота падения длинного леча ровна отношению длинной стороны к короткой и умноженные на высоту поднятия маленького плеча=3*0,5=1,5
Первый рисунок: FP - медиана( соединяет вершину треугольника с серединой противолежащей стороны)
FK - биссектриса(делит угол пополам)
FN - высота
Второй рисунок: PN - медиана, она же высота, т.к. треугольник равнобедренный.
Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам. Таким образом, мы получаем 4 равных прямоугольных треугольника.
Рассмотрим один из них. Гипотенуза равна 5, а один из катетов 3. Значит второй катет равен 4 (из расчета того, что это египетский треугольник или по теореме Пифагора, как вам удобней).
Площадь ромба равна 4 площадям данного треугольника.
(3*4/2)*4=24
Трапеция ABCD: ∠A =∠B = 90°, ∠DCA = 45° ⇒ ∠DAC = 45° ⇒ ΔCDA - равнобедренный, AD = DC = 4 см, то AC = √DC² + AD² = √16 + 16 = 4√2 см, ∠DCB = 135° ⇒ ∠ACB = 45°, ∠CBA = 45° ⇒ ΔACB - равнобедренный, ⇒ AC = CB = 4√2 см, AB = √AC² + CB² = √32 + 32 = 8 см. S =( (CD + AB) · AD) : 2 = 24 см²