6) Подкоренное выражение корня чётной степени должно быть неотрицательным, то есть ≥ 0 , но если этот корень в знаменателе, то подкоренное выражение строго > 0 .
Ответ :
Всего 5 целых чисел : - 4 ; - 3 ; - 2 ; - 1 , 0
+ - - +
___________₀_________₀___________₀__________
1 3 5
////////////////// ///////////////////////
x ∈ (1 , 3) ∪ (3 ; 5)
Всего 2 целых решения : 2 ; 4
Их сумма равна : 2 + 4 = 6
Последовательность {n³} является расходящейся, так как ее предел равен бесконечности.