1. Т.к. ABCD- ромб, то пересечение диагоналей делит эти диагонали пополам и она перпендикулярны, следовательно AO=OC=6 см и BO=OD=8 см. Т.к. Диагонали при пересечении перпендикулярны, то AOD- прямоугольный треугольник, то AD^=AO^2+OD^2=36+64=100 AD=(100)(скобки это корень)=10 см
2. Тк PH-высота, то PH и MK перпендикулярны, то MPH-прямоугольный треугольник. PH^2=MP^2-MH^2=225-81=144 PH=(144)=12 см.
S=PH*MK=12*17=204 см^2
3. Катет, который маленький, равен x. Катет, который в две раза больше другого, равен 2х
По теореме Пифагора 5^2=х^2+4x^2 25=5x^2 x^2=25/5 x^2=5 x=(5)(Повторяю, скобки это корень)- маленький катет. 2х=2(5)- большой катет
4. (Рисунок, который я скинул, это для 4 задания) Т.к. ВК- высота, то ВК перпендикулярно АД, то АКВ- прямоугольный треугольник. По теореме Пифагора BK^2=AB^2-AK^2=400-144=256 AB=(256)=16. По теореме Пифагора BD^2=BK^+KD^2=256+64=320 BD=(320)=8(5).
Уравнение окружности имеет вид:
(x - a)² + (y - b)² = R²,
где a и b – координаты центра окружности.
Подставим в уравнение известную точку,
(2 - a)² + (5 - b)² = 25.
Учтём, что центр лежит на биссектрисе угла 1-ой координатной четверти значит, a = b, тогда:
(2 - a)² + (5 - a)² = 25,
отсюда:
а = b = (7-√41)/2 [≈0,3].
Тогда уравнение окружности примет вид:
(x - (7 - √41)/2)² + (y - (7 - √41)/2)² = 25
Формула: bn=b1*q(в степени) n-1.
b4=8*(-1,2) в степени 3.
b4=-13,824
це 2 промені що мають спильний початок і при цьому вони утворюють розгорнутий кут
32 золотые медали и 9 место понимаешь