Площадь кольца можно найти отняв от площади круга с большим радиусом, площадь круга с меньшим радиусом.
Рассмотрим треугольники АОВ и СОЕ: они равны по двум сторонам и углу между ними (АО=ОС, ОВ=ОЕ, угол СОЕ = углу АОВ). Следовательно, АВ и СЕ равны.
Обратим внимание на то, что угол АВС=91°, следовательно АС - не диаметр и ∠САD не равен 90°.
Если из точки, лежащей вне круга, проведены секущая и касательная, то искомый угол γ = (β – α)/2 , где <span>γ - угол между касательной и секущей, </span> α - меньшая дуга окружности, заключенная между сторонами угла, β- большая.
На меньшую дугу опирается вписанный угол АСВ=72°, он равен половине дуги, ⇒ градусная мера дуги АВ вдвое больше и равна 144°
На большую дугу АС опирается вписанный угол, равный 91°, ⇒ градусная мера дуги АС вдвое больше и равна 182°.
Тогда ∠ADC =(182°-144°):2=19°
180*(n-2); 180*(6-2)=180*4=720; -сумма внутренних углов
720:6=120; (все углы равны!)
по теореме косинусов
х-сторона прав. шестиуг-ка
(2корень из 3)^2=x^2+x^2-2x*x*cos120
2x^2-2x^2cos(180-60)=4*3
2x^2 (1+cos60)=12
2x^2 *(3/2)=12
x^2=12*2)/(2*3)
x^2=4; x=2; P=6*2=12
В равных треугольниках стороны и углы соответственно равны.Значит и медианы равны.