3¹¹ * 27² = 3¹¹ * (3³)² = 3¹¹ * 3⁶ = 3¹¹⁺⁶ = 3¹⁷
(x-y)^2=x^2-2xy+y^2
(x+y)^2=x^2+2xy+y^2
x^2-y^2=(x-y)(x+y)
(x+y)^3=x^3+3x^2y+3xy^2+y^3
(x-y)^3=x^3-x^2y+3xy^2-y^3
x^3-y^3=(x-y)(x^2+xy+y^2)
x^3+y^3=(x+y)(x^2-xy+y^2)
Х- в день 1,у-в день 2
1/(х+у)=4⇒х+у=1/4⇒у=1/4-х
1/3х+2/3у=10⇒у+2х=30ху
1/4-х+2х=30х(1/4-х)
0,25+х-7,5х+30х²=0
30х²-6,5х+0,25=0
D=42,25-30=12,25 √D=3,5
x1=(6,5-3,5)/60=3/60=1/20⇒y1=1/4-1/20=4/20=1/5
x2=(6,5+3,5)/60=10/60=1/6⇒y2=1/4-1/6=1/12
1)x1=1/20⇒1:1/20=20дней
у1=1/5⇒1:1/5=5дней
2)х2=1/6⇒1:1/6=6дней
у2=1/12⇒1:1/12=12дней
Раз по реке она шла меньше времени при большем расстоянии, значит явно шла по течению. Пусть её собственная скорость V, время пути по реке t, тогда верны следующие соотношения(не забудем перевести минуты в часы):
36 = (V+2)*t,
35 = V * (t+1/20)
Раскрываем скобки:
36 = Vt+2t
35=Vt+V/20
Вычитаем из второго уравнения первое:
1 = V/20 - 2t
Выражаем скорость:
V/20 = 1 + 2t
V = 20 + 40 t
Подставим это соотношение, например, в первое уравнение:
36=(20+40t+2)t
36 = 40 t^2 + 22 t
40 t^2 + 22 t - 36 = 0
Сокращаем:
20 t ^2 + 11 t - 18 = 0
Решаем квадратное уравнение:
D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо)
t = (-11+-(39,5)) / 40 = {-1,25; 0,7}
Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости:
<span>V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч.
</span>Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
Tg(π/4-a)=(tgπ/4-tga)/(1+tgπ/4*tga)=(1-3)/(1+3)=-2/4=-0,5