Вычислим производную функции y: y' = 2x + 4/(x^2). Пусть y'=0:
(2x^3+4)/(x^2) = 0;
2x^3=-4;
x=-2^(1/3).
Вычислим значения функции при x=-1, x=-1/5, x=-2^(1/3):
y(-1) = 3;
y(-1/5) = 10+1/25 = 10,04.
y(-2^(1/3)) = 2^(2/3) + 2^(2/3) = 2^(5/3).
Очевидно, что наименьшее значение функции равно 3 при x=-1.
Ответ: min=3.
Вот я решил вашу задание ваш ответ
y=-3x^2-6x+2
x0=-b/2a=-(-6)/2*(-3)=-6/6=-1
y0=-3(-1)^2-6(-1)+2=-3+6+2=5
y=-x^2+x-1
x0=-b/2a=-1/2*(-1)=1/2
y0=-(1/2)^2+1/2-1=-0.25+0.5-1=-0.75
y=5x^2-10x+4
x0=-b/2a=-(-10)/2*5=10/10=1
y0=5-10+4=-5+4=-1
формула квадрат разности
(V3 - 1)^2 = (V3)^2 - 2V3 + 1 = 3 - 2V3 + 1 = 4 - 2V3
<span> L=r*f, где f-угол в радианах. Отсюда выразим r.
r= L / f = 0,36 / 0,9 = 0,4 м.</span>