В треугольнике АВС проведена медиана ВМ отрезки МК || ВС, КN || АС. Найдите периметр четырёхугольника АКNС , если КВ = 8 см, АМ=9 см, ВN=7 см.
Решение:
• АМ = МС , МК || ВС => АК = КВ
АК = КВ , KN || AC => BN = NC
• AK = KB = 8 см , NC = BN = 7 см ,
АМ = МС = 9 см
• KN = ( 1/2 ) • AC = 9 / 2 = 4,5 см - по свойству средней линии
• Р aknc = AK + KN + NC + AC = 8 + 4,5 + 7 + 9 = 28,5 см
ОТВЕТ: 28,5
Sin(60°)=√3/2. cos(60°)=1/2.
b=46. a=24.
(b-a)/2=(46-24)/2=11.
c=11÷1/2=22. P=2•22+46+24=114.
∠BAE=∠DAE (AE - биссектриса)
∠DAE=∠BEA (накрест лежащие при AD||BC)
∠BAE=∠BEA => △ABE - равнобедренный.
Биссектриса угла параллелограмма отсекает равнобедренный треугольник.
EC=x, BE=AB=3x
BC=BE+EC=3x+x=4x
P(ABCD)= 2(AB+BC) =2(3x+4x) =14x
14x=42 <=> x=42/14=3 (см)
AB=CD=3*3 =9 (см)
BC=AD=4*3 =12 (см)
Ответ:
в равнобедренном треугольнике бисектриса=высоте=медиане
Search Results
Featured snippet from the web
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Теорема 3.
Объяснение: