треугольник АВС равносторонний, проводим три средние линии: МН - параллельно АС, МК-параллельно ВС, НК параллельно АВ, получаем 4 равных треугольника АМК, МВН, КНС и КМН
Соединим точку Е с M и L, а точку A с L и K.
Четырехугольники MELK и MLAК - <u>параллелограммы</u>, так как обе <u>их диагонали</u> КЕ и ML в одном и МА и LK в другом <u>точкой пересечения</u> F и D соответственно<u> делятся пополам.</u>
LA║КМ, и EL║КМ
<em><u>Через точку, не лежащую на прямой, можно провести параллельную ей прямую, притом только одну.</u></em>
<em />Следовательно, точки А, L и Е лежат на одной прямой, что и требовалось доказать.
Периметр это сумма всех сторон.
Р=12+12+а
Р=24+а
1)Построим данное сечение:строим АМ перпендикуляр к гипотенузе ВС, тогда ДМ перпендикуляр к ВС (теорема о 3-х перпендикулярах).ДМ -наклонная, ДА-перпендикуляр к пл-ти АВС, АМ-проекция наклонной, тогда ВС перпендикулярна и к ДМ, след-но ВС пер-на плоскости(АДМ).
2) Площади тр-ка АДМ-прям. равна S= 0,5*АД* АМ. ! АД=16 см , АМ-?
3) Из тр-ка АВС-прям.:
ВС=25 см, т.к. данный тр-к подобен " египетскому" (!!! 3,4,5) с коэфф.5.
Площадь АВС равна: S1= 0,5*АВ*АС=0,5*20*15=150 (см^2).
С др. стороны S1= 0,5*ВС*АМ=150
0,5* 25*АМ =150
АМ =12.
4)S = 0,5*АД* АМ= = 0,5*16* 12= 96 (cм^2).
Ответ: 96 cм^2.