Дано:
АВС-равнобедренный
АВ=ВС
<В=120 градусов
АN-высота
АN=9
Найти АС
Решение:
так как АВ=ВС,то<ВАС=<ВСА. По свойству углов в треугольнике <ВАС=<ВСА=180°-120°=60° <ВАС=<ВСА=60°:2=30°
по свойству прямоугольного треугольника AN=1/2AC ,тогда АС=AN*2,тогда АС=9*2=18 см
Ответ:18 см
Ответ равен 1
это наверняка так как надо написать 20 символов
Треугольники ВМР и AMD -- подобны
(по двум углам: одна пара углов -- вертикальные,
вторая -- накрест лежащие при секущей АР и параллельных сторонах параллелограмма))
S(ABD) = 84 / 2 = 42 (диагональ делит параллелограмм на два равных треугольника))
S(AMD) = 42-14 = 28
треугольники АВМ и АМD имеют общую высоту из вершины А,
Площади треугольников с равными высотами относятся как основания))) -- известная Теорема.
S(ABM) / S(AMD) = 14 / 28 = BM / MD = 1 / 2 -- это коэффициент подобия треугольников ВМР и AMD
Площади подобных треугольников относятся как квадрат коэффициента подобия -- еще одна известная Теорема)))
S(BMP) = 28/4 = 7