Если есть вопросы , то в комментариях напишите ...
Пожалуйста напишите ответ сейчас! очень нужно
Решение
Пусть дана АВСD - трапеция, в которой: основания ВС = 5см, АD = 15см, диагонали ВD = 16см, АС = 12см.
Через точку С проводим СК параллельно диагонали ВD см.
Рассмотрим треугольник АСК. АК = АD + DК = 15 + 5 = 20(см).
Находим его площадь по формуле Герона. р = 0,5(20 + 12 + 16) =24(см)
S = √[24(24 - 20)(24 - 12)(24 - 16)] = 96(см²)
Проводим высоту трапеции СМ, она будет и высотой треугольника АСК. Находим СМ.
Площадь треугольника АСК: S = 1/2 * (AK*CM), отсюда
СМ = 2S / AK = (2*96) / 20 =9,6(см)
Тогда площадь трапеции равна 0,5(5 + 15)*9,6 = 96(см²)
Ответ: 96 см²
а) Приравниваем функции, находим абсциссы точек пересечения:
x^2+2x-1=x-1
x^2+x=0
x(x+1)=0
x=0 или x=-1
y=-1 или y=-2
Ответ: (0;-1);(-1;-2)
б) Подставляем игрек первой функции во вторую:
x^2+(x^2-5)^2=25
x^2+x^4-10x^2+25=25
x^4-9x^2=0
x^2(x^2-9)=0
x=0 или x=3 или x=-3
y=-5 y=4 y=4
Ответ: (0;-5);(3;4);(-3;4)