У равнобочной трапеции углы попарно равны.
А сумма 2 углов около боковой стороны равна 180.
Один угол - острый - равен 74, значит, второй - тупой - равен 180-74 = 106.
Два остальных угла тоже равны 74 и 106.
154:2=77*
Ответ:77*
Слишком легко
1)прямые параллельны по признаку внутренних односторонних углов. Если внутренние односторонние углы в сумме дают 180 гр., то эти прямые параллельны.
3)прямы параллельноы по признаку внутренних накрест лежащих углов. Если внутренние накрест лежащие углы равны, то эти прямые параллельны.
5) прямы не параллельны затем , что уних внутренние накрест лежащие углы не равны. Если внутренние накрест лежащие углы не равны, то прямые не параллельны.
7)прямые параллельны , так как внутренние накорест лежащие углы равны. Если внутренние накрест лежащие углы равны , то прямы параллельны.
2)прямы параллельны по признаку односторонних углов. <span>Если внутренние <span>односторонние углы в сумме дают 180 гр., то эти прямые параллельны.</span></span>
<span><span>4)<span>прямы параллельны по признаку односторонних углов. Если внутренние односторонние углы в сумме дают 180 гр., то эти прямые параллельны.</span></span></span>
<span><span><span>6)<span>прямы параллельноы по признаку внутренних накрест лежащих углов. Если внутренние накрест лежащие углы равны, то эти прямые параллельны.</span></span></span></span>
<span><span><span><span>8) не смогла </span></span></span></span>
<span><span><span><span>УДАЧИ НАДЕЮСЬ СМОГЛА ПОМОЧЬ</span></span></span></span>
1) Достроим треугольник до треугольника АСМ, добавив равный ему, где АВ=ВМ, СМ=АС. Тогда СМ=АМ=АС, и треугольник АСМ - равносторонний (т.к. АС=2 АВ).
Все углы равностороннего треугольника равны 60º
∠САВ=60º
АЕ- биссектриса, и ∠ САЕ=∠ЕАВ=∠АСЕ=30º , а ∠ СВА=180º-(60º+30º)=90º
------------------------------
2) В равнобедренном треугольнике АЕС ( по условию)
проведем высоту ( медиану) ЕН.
АН=НС=АВ
В треугольниках ЕАН и ЕАВ
<span>∠НАЕ=∠ЕАВ по условию
</span>АН=АВ
сторона АЕ - общая
Треугольники НАЕ и ЕАВ равны по первому признаку.
<span>∠ ЕНА= ∠ЕНС=90º по построению
</span>Отсюда угол АВЕ=АНЕ=90º
Треугольник АВС - прямоугольный с прямым углом В
Сумма острых углов прямоугольного треугольника равна 90º
<span>∠ ЕАС=∠ЕСА ⇒
</span><span><span>Так как АЕ биссектриса </span>∠ВАС, то ∠ВАС=2∠АСВ
</span><span>∠ АСВ+∠САМ= 3 ∠ АСВ
</span><span>∠ АСВ=90º:3=30º
</span><span>∠ САВ=2∠<span>САВ=60º
-------------------------------
3)
</span></span><span> АЕ=СЕ, следовательно, треугольник АСЕ - равнобедренный, угол САЕ=АСЕ. Достроим треугольник АВС равным ему, где боковая сторона равна АС, а основание равно АВ.
Тогда в нем АЕ=ЕС, и ЕС является биссектрисой угла С.
В новом треугольнике биссектрисы точкой пересечения делятся на равные части ( считая от вершин).
АВ=1/2АС, а основание нового треугольника равно АС, боковые стороны тоже в нем равны.
Так как АС=2АВ, ∠ АСВ=30°, отсюда ∠ВАС=60°.
<em><u>Треугольник АВС - прямоугольный с прямым углом В.</u></em></span>