<span>Сторона правильного шестиугольника равна b. Найдите его диагонали.</span>
Решение:
1. Рассмотрим треуг. ВКО: он прямоугольный, известен катет ОК - 4√3; гипотенуза ОВ = 1/2 ВД = 4: находим катет КВ по теореме Пифагора = 4.
<span>2. Получается, что катет КВ = 1/2 гипотенузы ОВ. Из этого следует, что угол КОВ = 30 градусов (по теореме) . </span>
3. Рассмотрим треуг. АКО: он прямоугольный, из п. 2 следует, что угол КАО равен также 30 градусам. Катет КО напротив этого угла известен, значит гипотенуза АО = 2КО = 8√3. По теореме Пифагора находим АК = 12.
4. Находим сторону ромба: КВ + АК = 4+12 = 16 см.
<span>5. Найдём вторую диагональ ромба: она равна 2АО = 16√3 см.</span>
8 см , тому що це квадрат , діагоналі дорівнюють один одному , і перпендикуляр дорівнює так само
Угол AOB = BOA = 65. это один и тот же угол