OA=OO_1=OB, так как они являются радиусами первой окружности
<span>O_1A=O_1O=O_1B, так как они являются радиусами второй окружности
</span>⇒ все эти отрезки равны⇒OAO_1 и OBO_1 являются равносторонними треугольниками, то есть их углы равны 60°, а ∠AOB=∠AOO_1+∠O_1OB=120°
Ответ: ∠AOB=120°; ∠OAO_1=60°
7
биссектриса делит сторону пропорционально прилежащим сторонам, т.е. длина неизвестного катета 3x, гипотенузы 5x
По Пифагору
(3x)²+(3+5)² = (5x)²
9x²+64 = 25x²
64 = 16x²
4 = x²
x = 2
катет АС = 3х = 6
гипотенуза АВ = 5х = 10
8
∠АСК = ∠ВСК = 45°
∠САВ = 180-45-105 = 30°
Катет противолежащий углу в 30°, в два раза короче гипотенузы, значит
AB = 2*BC = 8
Второй катет найдём по теореме Пифагора
AC² = BC²-AB² = 8²-4² = 64-16 = 48
AC = √48 = 4√3
S(ABC)=1/2*AB*AC = 1/2*4*4√3 = 8√3
Хорда АВ=16, хорда СД=12, НМ =14, НМ перпендикулярна АВ и СД и делит хорды пополам, АН=НВ=16/2=8, СМ=МД=12/2=6, О-центр, АО=ОС=радиус, ОН=х, ОМ=14-х, треугольник НАО прямоугольный, АО в квадрате = ОН в квадрате+АН в квадрате=х в квадрате+64, треугольник ОСМ прямоугольный, ОС в квадрате =ОМ в квадрате+СМ в квадрате = 196-28х+х в квадрате +36
х в квадрате+64 = 196-28х+х в квадрате +36
28х=168, х=6=ОН, ОМ=8, АО=корень(ОН в квадрате+АН в квадрате) = корень(36+64)=10 =радиус