<span>Инструкция</span>
1
Если в градусную меру нужно перевести величину угла в радианах, исходите из того, что одному градусу соответствует число радиан, равное 1/180 доле числа Пи. Эта математическая константа имеет бесконечное число знаков после запятой, поэтому и коэффициент перевода из радиан в градусы тоже является бесконечной десятичной дробью. Это означает, что абсолютно точного значения в формате десятичной дроби получить не получится, поэтому коэффициент перевода нужно округлить. Например, при точности в одну миллиардную долю единицы расчетный коэффициент будет равен 0,017453293. После округления до нужного числа знаков, разделите на этот коэффициент исходное число радиан, и вы получите градусную меру угла.
2
При решении математических задач из разделов, относящихся к геометрии, часто встречаются формулы, в которых величины углов выражены не радианами, а долями числа Пи. Если вы получите решение, содержащее эту константу, для перевода его в градусы замените π числом 180. Например, если центральный угол определен выражением π/4, это означает, что его градусная мера равна 180°/4=45°.
3
Углы могут быть выражены и единицами, которые имеют название «оборот». Такая единица соответствует 360°, поэтому проблем с пересчетом возникнуть не должно. Например, если в задании говорится об угле в полтора оборота, это соответствует 360*1,5=540° в градусном измерении.
4
Иногда в геометрических задачах упоминается развернутый угол. Она образуется двумя лучами противоположного направления, то есть лежащими на одной прямой. Используйте число 180 для выражения величины развернутого угла в градусах.
5
В геодезии, картографии, астрономии градусы делятся на еще более мелкие единицы, которые имеют собственные названия - минуты и секунды. Это деление имеет корни там же, где и градусы, поэтому каждый градус включает в себя 60 минут или 3600 секунд. Используйте эти числа, если секунды и минуты надо заменить десятыми долями градуса. Например, углу в 11°14'22" соответствует десятичная дробь, приблизительно равная 11 + 14/60 + 22/3600 ≈ 11,2394°.
1. В равнобедренной трапеции сумма противолежащих углов равно 180° ⇒ острый угол равен 45°. 2. Рассмотрим Δ, который образуется высотой: один из углов прямой, другой (из п.1) равен 45° ⇒ третий угол равен 45°⇒ этот треугольник равнобедренный ⇒ высота равна наименьшему отрезку, который она отсекает на большем основании. 3. Пусть длина высоты = x, тогда длина большего основания равна 3x. Если провести вторую высоту, то отрезок на большем основании между этими высотами будет равен меньшему основанию ⇒ это расстояние равно 6. Таких частей всего 3 ⇒ большее основание равно 18. 4. S трап. = 1/2(a+b)h ⇒ S трап. = 1/2(24*6) = 72
Диаметр АВ делит окружность на две дуги, равные 180º. Угол NBA вписанный, значит равен половине дуги, на которую он опирается. Отсюда найдем дугу NA=68°*2=136°. Дуга NB=180-136=44°. Угол NMB вписанный и опирается на дугу NB, поэтому угол NMB=44/2=22°. Ответ: 22º.
P=2+3+4=9 p=9/2=4,5 по формуле герона S=√p(p-a)(p-b)(p-c)=4,5(4,5-2)(4,5-3)(4,5-4)=...,(домножаешь потом на 10(избавляешься от запятых))= и считаешь так все остальное,и подставляешь следующие значения,