Способ 1)
Проведите в окружности произвольную хорду (этап 1)
Затем общеизвестным способом с помощью циркуля и линейки разделите ее пополам перпендикуляром.
По свойству радиуса, проведенного перпендикулярно к хорде через ее середину, продолжение получившегося перпендикуляра до окружности будет ее диаметром (этап 2).
Получившийся диаметр точно так же разделите перпендикуляром пополам. (этап 3)
Получите точку пересечения диаметров - это и будет центр окружности.
Способ 2)
Как известно, диаметр делит окружность на две дуги, градусная мера которых 180°.
Раствором циркуля, равным радиусу данной окружности, поочередно отметьте на ней три равных дуги. Их общая градусная мера равна 180°, так как раствор циркуля, равный радиусу, отмечает на окружности дугу, равную 60°.
Соединив первую (откуда начали ) и четвертую точку, получите диаметр.
От первой отложите в другой полуокружности тем же раствором циркуля еще одну точку (5). Эта дуга также равна 60°.
Соединив тоску 5 с точкой 3 по другую сторону от проведенного прежде диаметра, получите второй диаметр. Точка пересечения диаметров - центр окружности.
Средняя линия трапеции = полусумме оснований.
Сумма оснований этой трапеции равна 5*2=10 см
Если из периметра вычесть сумму оснований, получим сумму боковых сторон.
24 -10=14см
14:2=7 см - такова длина каждой боковой стороны этой трапеции.
Острый угол 52, значит, тупой 180 - 52 = 128
По теореме косинусов
d^2 = a^2 + b^2 - 2*a*b*cos A = 4^2 + 5^2 - 2*4*5*cos 128 ~ 65,626
d ~ 8,101
1) В основании - ромб АВСД с острым углом А 60 градусов. Треугольник АВД - равнобедр. (АВ=АД=6), значит углы АВД и ВДА равны по 1/2(180-60)=60 градусов. Получим равносторонний треугольник АВД со сторонами 6..Т.е. ВД=6
2) Угол наклона меньшей диагонали В1Д к основанию - это угол между наклонной В1д и ее проекцией ВД на плоскость основания. По условию он равен 45 градусов. Рассмотрим тр-к В1ВД: он прямоугольный (угол В равен 90 градусов) и равнобедренный (углы В1 и Д равны по 45 градусов), значит В1В=ВД=6.
3) V=Sh, где S- площадь ромба, а h - высота призмы, т.е В1В. Площадь ромба можно найти как произведение сторон АВ на АД и на синус угла 60 градусов между ними, т.е. 6*6*(корень из 3, деленный на 2), а высота В1В=6. Итак, V=108*(корень из 3)