a) cos3x=√2/2
3x= (+∨-)π/4+2πK
X=(+∨-)π/12+2/3*πK
б) 3cos²x+cosx-4=0
3t² +t -4=0
t₁=(-1-sqrt(1-4*3*(-4))/(2*3) =(-1-7)/6= -4/3
t₂=(-1+sqrt(1-4*3*(-4))/(2*3) =(-1+7)/6= 1
cosx = -4/3 <-1
cosx =1 ==>x=2π*k ; k∈Z (любое целое число)
в) √3cos2x+sin2x=0
2(√3/2cos2x + 1/2sin2x)=0
2(cosπ/6*cos2x + sinπ/6*sin2x)=0
2cos(2x -π/6) =0
2x -π/6=π/2 +π*k
2x=2π/3+π*k
x=π/3+π/3*k ; k∈Z (любое целое число)
2) sinx >√2/2
π/4<x< π-π/4 π/4<x< 3/4π
2π*k+π/4<x< 3/4π +2π*k
x∈ (2π*k+π/4x ; 3/4π +2π*k )
Вводим дополнительный угол, умножив обе части уравнения на ✓2/2
✓2/2sinx + ✓2/2cosx = ✓2/2
Это выражение похоже на формулу sin(a+b), тогда мы ее преобразовываем в:
sin(x+π/4) = ✓2/2, и если преобразовать ее, то и вправду выйдет ✓2/2sinx +...
sin(x+π/4) = ✓2/2
x+π/4 = (-1)ⁿπ/4 + πn, n€Z
x = (-1)ⁿπ/4 - π/4 + πn
Представим, что это два треугольника. Так как в ромбе все стороны равны, то это будут равнобедренные треугольники. следовательно, высоты будут равны.
Cosx/ctgx= cosx/(cosx/sinx)=(cosx*sinx)/cosx. Косинусы сокращаются. Выходит, что cosx/ctgx=sinx.
И тогда нам надо вычислить 30|sinx|.
Вычисляем: 30|-0,8|= 24.