Sin B = AH/AB = (6√69)/50 = (3√69)/25.
cos B = √(1-sin²B) = √(1-(621/625) = √(4/625) = 2/25.
Смотри файл.
из "красивых" треугольников находим с легкостью BM и BN
тогда площадь- по теор. синусов
S=BM*BN/2 *sin (30+45)=3√2/2*3√3/2*1/2*(sin30cos45+cos30sin45)
S=9/16*(√3+3)
<em><u>Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.</u></em>
Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам
Половина большей диагонали - 8 см.
Получили прямоугольный треугольник с гипотенузой c = 10 см
и катетом a = 8 см.
Второй катет: b = √(c²-a²) = √(100-64) = √36 = 6 (см)
Значит, вторая диагональ ромба: d₂= 6*2 = 12 (см)
Площадь ромба: S = d₁d₂/2 = 12*16/2 = 96 (см²)
Ответ: 96 см²
110+2х=180
2х=70
х=35
110 угол верхний