Даны углы при большем основании трапеции: 46° и 64°.
Треугольник, сторонами которого являются обе биссектрисы и большее основание . имеет углы: 23°, 32° и 180-23-32=125°. Углом между прямыми принято считать меньший их углов . Поэтому ответ 55°.
В прямоугольном треугольнике угол <span>между высотой CH и биссектрисой CM, проведенными из вершины прямого угла, равен половине разности острых углов треугольника.
Угол А = 90</span>°<span> - 56</span>°<span> = 34</span>°.
Тогда искомый угол равен (56° - 34°)/2 = 22°/2 = 11°.
Это вытекает из рассмотрения прямоугольного треугольника, где катет при угле 56 градусов является гипотенузой.
Второй острый угол в нём равен 34°.
А угол до биссектрисы равен 45°.
Отсюда получаем 45°-34° = 11°.
1) т к абсд- ромб то у него все стороны равны. (вектора) ад=а=б=сд
дальше пойдут одни вектора
2) сб+сд=са
са=а+б или а+а или б+б (без разницы)
3) оа+ад=од (точка о- пересечение диагоналей ромба)
од=0.5бд
0.5бд= а+оа
оа=0.5са
теперь берем известную величину са (2 действие. возьмем са=2а)
0.5бд=а+2а=3а
бд=3а*2=6а
Квадрат диагонали равен сумме квадратов трех измерений (длины, ширины, высоты), а раз в кубе длина=ширине=высоте, то
32²=a²+a²+a²
32²=3a²
a²=32²/3
у куба 6 граней, площадь каждой равна a²
S=6·a²=6·32²/3=2048
Проведем высоту ВН. ΔАВН - прямоугольный, ∠А=60°, тогда ∠АВН=30°, а АН=1\2 АВ=3.
Из ΔАВН найдем ВН
ВН=√(АВ²-АН²)=√(36-9)=√27.
Если основание АД=10, то ВС=10:5=2.
Проведем высоту СК=ВН=√27.
НК=ВС=2. АК=АН+КН=3+2=5; КД=АД=АК=10-5=5.
Найдем АС из ΔАСК. АС²=АК²+СК²=25+27=52. АС=√52=2√13.
Найдем ВД из ΔВДН, где ДН=КН+КД=2+5=7. ВД²=ВН²+ДН²=27+49=76. ВД=√76=2√19.
Найдем ∠СОД по формуле площади трапеции
S=1\2 d₁*d₂*sinα
найдем площадь по формуле S=1\2 (АД+ВС)*ВН=1\2 * (10+2) * √27 = 18√3.
18√3=1\2 * 2√13 * 2√19 * sin∠СОД
18√3=2√247 * sin∠СОД
sin∠СОД=15,6\15,7=0,9936
∠СОД=84°
Ответ: 2√13 ед.; 2√19 ед; 84°