Стол ( столешница), дверь, тетрадь, компьютер.
1 , 3+10+11 =24 2,360/24=15 3 ,3*15=45 4, 10*15=150 5, 11 *15= 165 градусную меру меньшего из углов треугольника ABC ровно 45/2=22,5 ответ 22,5
5/п - радиус
10/п - диаметр
По формула нахождения длина круга имеем:
L=rd=
L=5/п*10/п=50/п
Усеченная пирамида АВСА1В1С1, в основаниях правильные треугольники АВС и А1В1С1, АС=7, А1С1=5, ОО1-высота пирамиды, О и О1 -центры треугольников, - пересечение высот=медиан=биссектрис, проводим высоты ВН и В1Н1, проводим апофему Н1Н, треугольник АВС, ВН=АС*корень3/2=7*корень3/2, треугольник А1В1С1, В1Н1=А1С1*корень3/2=5*корень3/2, при пересечении медианы делятся в отношении 2/1 начиная от вершины, ВО=2/3ВН=(2/3)*((7*корень3/2)=7*корень3/3, ОН=1/3ВН=(1/3)*(7*корень3/2)=7*корень3/6, треугольник А1В1С1, В1О1=2/3*В1Н1=(2/3)*(5*корень3/2)=5*корень3/3, О1Н1=1/2В1Н1=(1/3)*(5*корень3/2)=5*корень3/6, прямоугольная трапеция О1В1ВО, уголВ1ВО=45, проводим высоту В1К на ВО, ОО1В1К прямоугольник ОК=О1В1=5*корень3/3, КВ=ВО-ОК=7*корень3/3-5*корень3/3=2*корень3/3, треугольник КВ1В равнобедренный, угол КВ1В=90-45=45, КВ=В1К=О1О=2*корень3/3, рассматриваем прямоугольную трапецию О1ОНН1, проводим высоту Н1Т на ОН, ТН1О1О прямоугольник О1О=Н1Т=2*корень3/3, О1Н1=ОТ=5*корень3/6, НТ=ОН-ОТ=7*корень3/6-5*корень3/6=2*корень3/6, треугольник Н1Нт прямоугольный, Н1Н=корень(Н1Т в квадрате+НТ в квадрате)=корень(12/9+12/36)=корень(5/3), площадь боковой=1/2(периметрАВС+преиметрА1В1С1)*Н1Н=1/2*(3*7+3*5)*корень(5/3)=18*корень(5/3)=6*корень15
пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
Ответ: √6