1) -9x²+8x+1=-9*(x-(4-√7)/9)*( x-(4+√7)/9)
Я уже отвечал. Это уравнение выполняется только при соблюдении таких условий:
{ sin 7x = 1
{ cos 6x = -1
{ sin 5x = -1
{ sin x = -1
При этом левая часть равна правой и равна 3.
Решаем все эти уравнения
{ 7x = Π/2+2Π*q
{ 6x = Π+2Π*n
{ 5x = 3Π/2+2Π*m
{ x = 3Π/2+2Π*k
Находим
{ x = Π/14+2Π/7*q
{ x = Π/6+Π/3*n
{ x = 3Π/10+2Π/5*m
{ x = 3Π/2+2Π*k
Общий корень всех этих уравнений
x = 3Π/2+2Π*k = 21Π/14+2Π*k = 9Π/6+2Π*k = 15Π/10+2Π*k
Эти корни можно представить так:
21Π/14+2Π*k = Π/14+20Π/14+2Π*k = Π/14+5*2Π/7+2Π/7*7k = Π/14+2Π/7*(5+7k); q = 5+7k
9Π/6+2Π*k = Π/6+8Π/6+2Π*k = Π/6+4*Π/3+Π/3*6k = Π/6+Π/3*(4+6k); n = 4+6k
15Π/10+2Π*k = 3Π/10+12Π/10+2Π*k = 3Π/10+3*2Π/5+2Π/5*5k = 3Π/10+2Π/5*(3+5k); m = 3+5k
Итак, корни уравнения:
x = 3Π/2 + 2Π*k
Для промежутка [-7Π; -5Π] выполнено неравенство:
-7Π <= 3Π/2+2Π*k <= -5Π
-17Π/2 <= 2Π*k <= -13Π/2
-17 <= 4k <= -13
Целое решение только одно:
4k = -16; k = -4; x = 3Π/2-8Π = -13Π/2
4(x-6)+5x=121;
4x-24+5x=121;
9x=121+24;
9x=145;
x=16,1
Решение:
(2/13)^(x - 1) ≥ 1
(2/13)^(x - 1) ≥ (2/13)^0
у = (2/13)^х - убывающая функция, т.к. 0 < 2/13 < 1, тогда
х - 1 ≤ 0
х ≤ 1
х ∊ (- ∞ ; 1]
Ответ: (- ∞ ; 1]