а)во вложении
б)
Угол АОВ и угол МОА - смежные, их сумма равна 180
Угол МОА=180-100=80 градусов
Угол МОА=углу СОВ(так как они вертикальные)
Значит, угол МОА=углу СОВ=80 градусам
1)СУС
2)УСУ
3)СУС
4)СУС
5)УСУ
6)УСУ
Могу помочь со вторым заданием:
В трапеции АВСД проведен отрезок ВЕ так, что он делит трапецию на параллелограмм ВСДЕ и треуг. АВЕ. Рассмотрим треуг. АВЕ. В нем известно два угла - угол ВАС и угол АВЕ, значит мы можем найти третий угол - АЕВ и равен он будет 180-(40+75) = 65*. Но угол АЕВ - часть развернутого угла АЕД и значит мы можем найти угол ВЕД и равен он будет 180-65 = 115*. Но угол СВЕ = углу ВЕА как накрест лежащие углы при пересечении параллельных с отрезками ВС и АД. Значит угол СВЕ тоже будет равен 65*. А в параллелограмме противоположные углы равны и, т.о. угол Д тоже будет равен 65*.
Изобразим плоскость α в виде прямой АВ║α. Пусть одна часть равна х, тогдаВВ1=2х, АВ= 5х.
По условию АВ= ВВ1=5х-2х=9, 3х=9, х=9/3=3.
АВ=5·3= 15 л.ед.
ВВ1=2·3=6 л. ед. АВВ1А1 - параллелограмм ( по условию противоположные стороны параллельны). Вычислим периметр.
Р= 2(15+6)=42 л. ед.
Ответ: 42 л. ед.